<table>
<thead>
<tr>
<th>Serial No</th>
<th>Author 1</th>
<th>Author 2</th>
<th>Author 3</th>
<th>Title</th>
<th>Keywords</th>
<th>Description</th>
<th>Category</th>
<th>Publisher</th>
<th>Publication Date</th>
</tr>
</thead>
</table>
Effect of Sulphate Cathartics on Adsorption of Rifampicin to Activated Charcoal

The effect of magnesium sulphate and sodium sulphate on the in vivo adsorption of rifampicin to activated charcoal (AC) was investigated. Solutions of rifampicin alone and rifampicin with 7.5 mg/ml cathartic solution were vortex mixed for 30 s with different quantities of AC, incubated for 30 min at 37°C and analyzed for free rifampicin spectrophotometrically at 320 nm. Addition of sodium and magnesium sulphates significantly increased (P<0.05) the adsorption of rifampicin to activated charcoal. In all, the adsorption obeyed quantity-dependent kinetics.

The ability of activated charcoal to adsorb poisons and drugs has been extensively demonstrated; hence its use in poison management is widely available in literature, which demonstrate on the ability of activated charcoal to adsorb antibiotics. The safety of activated charcoal is remarkable being non-reactive and is not absorbed in the gastrointestinal tract. Oral administration of activated charcoal often results in occasional constipation and combined administration of charcoal with sufficient dose of cathartic such as sodium or magnesium sulphate or sorbitol will result in charcoal laden stool in most patients. Sulphates cathartics are usually co-administered with activated charcoal to prevent constipation or expulsion. Hence we set out investigate the effect of sodium and magnesium sulphates on the ability of activated charcoal to adsorb rifampicin.

Activated charcoal (Ultra carbon Merck) sodium sulphate and magnesium sulphate (reagent grade, BDH, England) were used in this study. Fifty to 600 mg of activated charcoal (AC) were placed in test tubes. Rifampicin solutions of 2.5, 5, 10, 50 and 100 µg/ml concentration were prepared in distilled water. Five milliliters of each solution was added to tubes containing activated charcoal. The resulting rifampicin charcoal slurry were vortex mixed for 30 s, incubated in a water bath shaken for 30 min at 37°C, and centrifuged at 3000 rpm for 5 min. Rifampicin was then determined in the clear supernatant using UV-320 nm Jenway electrophoto-meter, England.

In another experiment, the effect of sulphate and magnesium sulphate on the adsorption of rifampicin to AC was investigated. Five milliliters of solutions containing 7.5 mg/ml sodium sulphate, 7.5 mg/ml magnesium sulphate with 2.5, 5, 10, 50 and 100 µg rifampicin/ml were added to test tubes containing 50-800 mg AC. The tubes were vortex mixed, incubated, and centrifuged and analyzed similarly as described above.

In all the percentage of rifampicin adsorbed from the original solutions was calculated from the percentage of drug remaining in the supernatant. In all the experiments, duplicates of the results agreed well. The significance of data was determined by statistical analysis at P<0.05.

The B-50 (amount of AC in mg required to bind 50% of drug at stated concentrations) was determined from a plot of percent of drug bound versus logarithm of concentration of AC.

Figs. 1 and 2 show adsorption of different concentrations of rifampicin to increasing amount of AC and the adsorptive effect of MgSO4 and Na2SO4 respectively. As the quantity of AC increased the adsorption of the rifampicin to AC increased and the adsorption of rifampicin to AC increased and the...
addition of the two saline cathartics (MgSO₄ and Na₂SO₄) did not alter the quantity dependent adsorption pattern. Figs. 1 and 2 showed leftward shift of the graph of rifampicin with MgSO₄ and Na₂SO₄, indicating increased adsorption of rifampicin to AC when compared with rifampicin alone. The B-50 values of rifampicin alone. The B-50 values of rifampicin alone and the effect of MgSO₄ and Na₂SO₄ on the B-50 values is shown on fig. 3 and 4. Treatment with MgSO₄ and Na₂SO₄ resulted in decreased amount of AC required to bind 50% of rifampicin at the both therapeutic and simulated toxic concentrations.

Fig. 3: B₅₀ values of rifampicin and effect of magnesium sulphate
B₅₀ values of rifampicin were determined at 3 concentration levels in the absence (•) and the presence of 7.5 mg/ml of magnesium sulphate (●)

Fig. 4: B₅₀ values of rifampicin and effect of sodium sulphate
B₅₀ values of rifampicin were determined at 3 concentration levels in the absence and (●) presence of 7.5 mg/ml of sodium sulphate (△)
Our results have shown that activated charcoal can absorb rifampicin and this is in conformity with the earlier work of Illeson et al. (1991) who reported significant increase in azaprophenol adsorption to activated charcoal and Onisakwe et al. (1996) who also reported quantity dependent and significant increase in the adsorption of rifampicin to activated charcoal.

The use of activated charcoal in poison management and the ability of activated charcoal to adsorb poisons and drugs have been widely studied and applied. What might be interesting is find out what needs to be given with activated charcoal to increase its efficacy and probably reduce the dose of activated charcoal in poison management. To this end in this goldfish study we found a significant increase in adsorptive capacity of AC after addition of MgSO4 and Na2SO4 saline cathartics. This also resulted in lower B:50 values (amount of activated charcoal required to bind 50% of rifampicin in a standard solution).

These findings are in agreement with our previous findings in which we reported that MgSO4 significantly enhanced the adsorption of quinine to activated charcoal. Goldberg et al. (1987) has reported increased adsorption of theophylline to activated charcoal with another saline cathartic for oral in the gastrointestinal tract which resulted to reduced area under the curve (AUC) of theophylline. We therefore recommend the use of activated charcoal, and conservative doses of MgSO4 or Na2SO4 in rifampicin overdose especially in cases where constipation or impaction is envisaged.

REFERENCES