<table>
<thead>
<tr>
<th>Serial No</th>
<th>NWACHUKWU, D. C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author 1</td>
<td>NWACHUKWU, D. C.</td>
</tr>
<tr>
<td>Author 2</td>
<td>BELLO, O. II.</td>
</tr>
<tr>
<td>Author 3</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Glucose Tolerance During Pregnancy in Fructose- Fed Rats</td>
</tr>
<tr>
<td>Keywords</td>
<td>Diabetes, Pregnancy, Blood Pressure, and Head Rates</td>
</tr>
<tr>
<td>Description</td>
<td>Glucose Tolerance During Pregnancy in Fructose- Fed Rats</td>
</tr>
<tr>
<td>Category</td>
<td>Physiology</td>
</tr>
<tr>
<td>Publisher</td>
<td>Journal of Medical Sciences</td>
</tr>
<tr>
<td>Publication Date</td>
<td>1999</td>
</tr>
<tr>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>
Glucose Tolerance During Pregnancy In Fructose-Fed Rats

1.1. Olutunji-Bello and 1) D. Nwachukw
1Department of Physiology, College of Medicine, University of Lagos, Nigeria.

Correspondence: 1.1. Olutunji-Bello

SUMMARY

The effect of chronic fructose-feeding on glucose tolerance during pregnancy was investigated. 48 puberal female rats were used. The experimental rats were fed with 25% fructose mixed with normal rat chow for a minimum period of 3 weeks and the control rats were fed with the normal rat chow. They all had free access to drinking water. At the end of the feeding period of 3 weeks, the animals were fasted and 24 hours later, 30% glucose solution given at a dose 0.3 ml per 100g body weight was administered orally and blood samples obtained from the femoral artery. Plasma glucose estimation was done as described by Schmidt and Trinder (1969). Fasting and 2 hr plasma glucose levels remained significantly higher in the fructose-fed rats (p<0.01) throughout the duration of pregnancy. Fasting glucose levels in the control rats was 77.42±2.39mg% while that of the fructose-fed rats was 91.25±3.58mg%. In the fructose-fed group, an average increase of 36% was observed in the 2 hr plasma glucose level over the fasting glucose level while an increase of 25.21% was observed in the control rats. A prolonged glucose tolerance was obtained in the fructose-fed rats.

INTRODUCTION

Diabetes mellitus may be caused by insufficient production of insulin or insulin resistance. There are also situations in which an abnormal elevation of plasma glucose level secondary to some clinical factors (such as acromegaly, Cushings disease etc.) has been observed. Diabetics mellitus will lead to glycogenoly, polyuria and polydipsia. Glycosuria was first reported in an uncomplicated pregnancy by Bost. Since then, glucose homostasis during pregnancy has been intensely studied. Diabetes mellitus is one of the manifestations of the disturbance in glucose homeostasis during pregnancy. Several works have been done to elucidate the pathogenesis of diabetes mellitus during pregnancy especially that caused by insulin resistance. Bahn et al. and Kadiyan et al. had demonstrated disturbance in glucose homostasis caused by insulin resistance during pregnancy. Insulin resistance has been linked to contractile activity of pregnancy hormones which may cause, in susceptible women, impaired glucose tolerance (gestational diabetes) or may cause in diabetic women a worsening of metabolic control.

Increased dietary fructose has been shown to produce insulin resistance. Fructose feeding has been shown to modify multiple aspect of carbohydrate metabolism, it was shown to cause a decrease in glucose oxidation at hepatic tissue and at adipose tissue and at antral muscle. The number and total volume of islets of Langerhans was found to increase during pregnancy. In spite of these findings, pregnancy was still described as a diabetogenic state and this was verified using the oral glucose tolerance test.

MATERIALS AND METHODS

48 puberal female of the Sprague-Dawley strain were used in the study. The rats were divided into two groups of control and fructose-fed rats. The fructose-fed rats were fed with normal rat chow mixed with fructose (ratio 3:30 i.e 25% fructose fed) for three weeks before the commencement of the experiment, while the control rats were fed with the normal rat chow. Both groups of rats had free access to water.

Estrous cycle of the animals were monitored. Male rats of proven fertility was introduced into the cage of the female rats that was expected to get into the estrous phase within 12 hours to allowing for mating. Day 1 of pregnancy was taken as the day sperm were seen in the vaginal smear of the rat. Measurements were carried out in the first trimester (Day 6), second trimester (Day 13) and third trimester (Day 20).

The rates were autonatized by inhalation of aseptic ether. A 30% glucose solution was given at a dose of 0.3 ml per 100g body weight 12 by means of orogastric camera over a period of 1 minute. Plasma glucose estimation was as described by Schmidt and Trinder (13). D- glucose from Griffin and George, England was used in preparing standard glucose solutions and standard curve was plotted. From the standard curve, glucose concentration in each plasma sample was obtained by extrapolating its absorbance to the glucose concentration axis. All results were analyzed using Student's "t" test. The level of significance was taken as P<0.05.
RESULTS

The results obtained from the control group (Fig. 1) showed two major changes: maximum plasma glucose concentration was attained 60 minutes after glucose loading and plasma glucose concentration fell to almost normal levels after 120 minutes in both pregnant and non-pregnant rats.

For fructose-fed (diabetic) rats, the elevated plasma glucose levels (Fig. 2) were sustained during pregnancy especially in third trimester.

DISCUSSION

The results of the present study are similar to those obtained by Yamauchi and Reaven. The plasma glucose concentration in human subjects used by these workers, however, returned to fasting level earlier than did in the rats used in the present study. The delay in returning the elevated plasma glucose level to baseline values suggest any of the following: the rate of insulin production may fall during pregnancy, that the rate of delivery of insulin to target tissues may fall or that the action of insulin may be impaired during pregnancy. However, it was earlier suggested by Godfrey et al. that there is an increase in insulin secretion as well as total volume of fluid of amniotic fluid during pregnancy in rats. Therefore the delay observed may be due to a fall in insulin action during pregnancy. This agrees with the views of Yamauchi. Prolonged glucose tolerance curve was linked to constraint of activity of pregnancy hormones. Estrogens and progesterone were implicated, they are believed to be involved in degradation of insulin with insulinaemia, alteration of central dynamics and production of prednisolone and placental hormones. All these changes affect insulin receptors and make them resistant to insulin action which in turn is responsible for the impaired glucose tolerance in gestational diabetes in the pregnant rats (see Fig. 1).

Plasma glucose levels in the three trimesters were significantly higher in the fructose-fed rats than those of the controls. The elevated plasma glucose levels failed to return to the baseline value in the three trimesters after 2 hours unlike those did in the pregnant control rats. The result is similar to that obtained by Martinez et al. using dog model but contradicts that obtained by Kaufmann et al. This difference may be due to the rat model used. Kaufmann and his colleagues used 89h fasting rats which is an insulin dependent diabetic rat. The result of the present study shows that fructose-fed rats are not insulin dependent, the hyperglycaemia observed may be due to insulin resistance rather than insulin deficiency. The present study shows a correlation between the level of hyperglycaemia and gestational period in both control and fructose-fed rats. This is similar to the result obtained using human subjects. This suggests that the degree of insulin resistance increases with gestational period.

The impaired insulin action in the fructose-fed rats may be due to decreased receptor affinity or reduction in the number receptors, abnormal cell function that determines the response to a given stimulation of insulin-receptor complex. It may also be due to a decrease in glucose oxidation in hepatic tissue or in skeletal muscle and adipose tissue. Thus the overall effect of fructose feeding is a potentiated insulin resistant state as confirmed by the level of significance between the results obtained from the control and fructose-fed rats.

In conclusion, severe fructose-feeding have been shown to aggravate the impaired glucose tolerance during pregnancy in the rats. This finding adds to the ever growing evidence that insulin resistance impairs glucose tolerance and plays a major role in the development of diabetes during pregnancy.

ACKNOWLEDGEMENTS

The authors appreciate the advice of Dr. B. J. Adegunsoye and the technical assistance of Mr. O. A. Owolabi.

5. Solomon GC, Glonek SW, Glonec MF and Sealey EV: Glucose intolerance as a predictor of hypertensive in
Pregnancy. Hypertension, 1994; 23 (pi g 1): 7127 –
721.

6. Martinez FJ, Rizzi AR and Romeo JC: High-fructose feeding elicits insulin resistance hyperinsulinism and
hypertension in normal mongrel dogs. Hypertension

7. Tuovinen CG and Bender AE: Some metabolic effects of prolonged feeding of starch, fructose and
carbohydrate-free diet in the rat. Nutr. Metab 1975; 19:
161-172.

8. Vianna A, Fabry P, Slabochova A and Kazdova L:
Effect of dietary fructose on free fatty acid release from adipose and serum fatty acid concentration in the rat

and glucose oxidation by adipocytes of rats with
fructose-induced hyperglycemia. Metabolism 1978;

and a few pregnant "normal" patients" by Tseyer et al. J.
Endocrinol 1932; 35: 787-79.

11. Junod A, Lambert AE, Stauffacher W and Renald AE:
Diasometric activity of spermatogenesis: Relationship of
dose to metabolic response J Clin Invest 1969; 48:
21-29.

12. Trinder P. Determination of glucose in blood using
glucose oxidase with an alternative oxygen acceptor. Ann.

13. Rexner DM. Diabetes mellitus pathogenesis and treatment Marcel

14. Gribby GM, Weilert L.L., Smith DF and Schmidt FG: Effect of pulse administration of glucose or glycogen
intratventriculally in rats. Metabolism 1974: 16:
232.

15. Loutola HT, Pyram A, Vahojedzyd and the European
287-291.

16. Kahn R: Insulin resistance, insulin insensitivity and
insulin unresponsiveness: A necessary distinction.

17. Moeller DE and Flerk JS. Insulin resistance: Mechanisms
syndromes and implication. N Engl J Med. 1991; 325:
938 – 948.