<table>
<thead>
<tr>
<th>Serial No</th>
<th>ISSN:0855-0395</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author 1</td>
<td>OFOEFULE, S. I</td>
</tr>
<tr>
<td>Author 2</td>
<td></td>
</tr>
<tr>
<td>Author 3</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>In Vitro Evaluation of the Bioadhesive Properties of Tacca Starch-Carbopol 940 Admixtures and their Application as Bioadhesive Systems for Metronidazole Tablets</td>
</tr>
<tr>
<td>Keywords</td>
<td>Bioadhesion, Admixtures, Tensiometric Measurement, Coated Beads Metronidazole, I-Mucin.</td>
</tr>
<tr>
<td>Description</td>
<td>In Vitro Evaluation of the Bioadhesive Properties of Tacca Starch-Carbopol 940 Admixtures and their Application as Bioadhesive Systems for Metronidazole Tablets</td>
</tr>
<tr>
<td>Category</td>
<td>Biological Science</td>
</tr>
<tr>
<td>Publisher</td>
<td>Journal of the University of Science and Technology Kumasi, Ghana</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2001</td>
</tr>
<tr>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>
IN VITRO EVALUATION OF THE BIOADHESIVE PROPERTIES OF TACCA STARCH-CARBOPOL 940 ADMIXTURES AND THEIR APPLICATION AS BIOADHESIVE SYSTEMS FOR METRONIDAZOLE TABLETS

S.I. Ojeofule (PhD)
Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka, Enugu State, Nigeria.

ABSTRACT

Bioadhesive properties of Taccia starch-Carbopol 940 (TS - CP) admixtures were evaluated. Detachment of polymer coated beads and tensiometric measurement were employed as indices of bioadhesion. The admixtures were subsequently employed as mini-matrix in the formulation of metronidazole bioadhesive tablets. The release profiles of tablets were assessed in simulated intestinal fluid (SIF) without pancreatin. At all TS-CP admixture combination ratios 1:0, 1:1, 3:7, 3:2, 2:3 and 0:1, good bioadhesive strengths were obtained on isolated pig intestinal and on intestinal 1-mucin. The metronidazole bioadhesive tablets exhibited higher tension than the polymer dispersions as a result of variation in the hydration of the polymer content in 1-mucin and in actual mucous surface. Tensiometric measurements and detachment of polymer-coated beads demonstrated significant influence of Taccia starch in the bioadhesion of the admixtures. Release of metronidazole from the bioadhesive tablets pointed to sustained release model.

Keywords: Bioadhesion, Admixtures, Tensiometric Measurement, Coated Beads, Metronidazole, 1-mucin.

INTRODUCTION

Bioadhesion is the attachment of a material or object to the surface of a biological membrane. When the biological membrane involved is a mucosal epithelium it is referred to as mucoadhesion. Bioadhesive drug delivery systems offer a new approach to the treatment of certain local and systemic diseases [1, 2]. This approach, in addition, could be utilized to prolong duration of drug action and in optimization of drug delivery to specific organs, tissues and regions of the body such as rectal, gastrointestinal, nasal, ocular, and buccal regions. Drugs to be delivered are tableted with the required tooling by direct compression. Many polymers ranging from cellulose derivatives to polyacrylic acid polymers (e.g.) Carbopol have been utilized as bioadhesive polymers [4, 5].

Cassava hydrogel was recently evaluated as a bioadhesive system for mucosal drug delivery [6]. Taccia starch is a starch extracted from the tubers of Taccia involucrata plant. The starch forms thick gel in the temperature range of 65-70°C and it has been employed as a tablet binder and disintegrant [7, 8] and as an adsortent for cuproxacin [9]. The present study evaluated Taccia Starch and its admixtures with Carbopol 940 as bioadhesive materials and their possible application as bioadhesive polymers for drugs intended for delivery in the small intestine. Metronidazole was chosen as a test drug because it is employed therapeutically in the treatment of intestinal and extra intestinal amoebiasis. Evaluations of some polymer-admixtures as bioadhesive materials for this drug have been reported [10, 11]. For instance the drug has been used as a model drug in the in vitro study of bioadhesive controlled tablets in which Carbopol 934 and hypromellose mixtures were used as bioadhesive material [10]. We have recently employed Carbopol 940 and 941 - sodium carboxymethylcellulose admixtures in the formulation of adsorptive metronidazole tablets [11].

EXPERIMENTAL

Materials

The following materials were used as procured from their manufacturers: Carbopol 940 (B. F. Goodrich, USA), metronidazole (May and Baker, England). Other reagents are of analytical grade. Taccia starch was extracted from the tubers of Taccia involucrata plant by a process...
Previously reported [7]. Simulated intestinal fluid without pancreatin was freshly prepared according to B.P. 1980 specification.

Apparatus

The apparatus adapted for bioadhesive test is shown diagrammatically in Figure 1. It is made up of a separating funnel. A metal support was used to position a polythene support at an angle of 50°. A freshly excised pig ileum was pinned on this polythene support. A beaker was placed under the polythene support to collect detached beads and the wash solution-simulated intestinal fluid without pancreatin. The pig ileum was chosen because the pig has physiological function similar to that of human [12].

Coating of Glass Beads

Glass beads of average weight (0.106g) and diameter (2.5mm) were washed with distilled water and acetone to maximize the roughness factor [13]. Different gels made of combination of Taccach starch and Carbopol 940 or single polymer was prepared according to the formula in Table 1. Taccach starch gels containing the different proportions of Taccach starch were prepared with the aid of heat. The polymer gels were used in coating the beads to uniform thickness as much as possible. Coated beads were air dried and stored in a desiccator.

Table 1: Composition of polymer Admixtures

<table>
<thead>
<tr>
<th>Batch</th>
<th>Taccach starch (g)</th>
<th>Carbopol (g)</th>
<th>Total (g)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.0</td>
<td>5.0</td>
<td>10.0</td>
<td>5:5</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>2.5</td>
<td>5.0</td>
<td>5:5</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>1.5</td>
<td>3.0</td>
<td>3:3</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>1.5</td>
<td>3.0</td>
<td>3:3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1:1</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>1:1</td>
</tr>
<tr>
<td>7</td>
<td>2.0</td>
<td>2.0</td>
<td>4.0</td>
<td>2:2</td>
</tr>
</tbody>
</table>

Preparation of Mucin

The ileum of a freshly killed pig was excised open and the waste materials therein were rinsed with cold normal saline. The mucous surface was scrapped with a glass slide. Equal volume of distilled water was added to the mucous. This was homogenized for two hours and stored at 4°C for 48 hours. It was centrifuged at 2,500 rpm for 30 minutes. The supernatant (S-mucin) and the precipitate (I-mucin) were recovered [14].

Bioadhesion of Coated Beads on Isolated Intestinal Mucus

A freshly excised pig's ileum of length 1.5cm and internal diameter 1.7cm was washed free of internal waste with normal saline. The tissue was pinned onto the polythene support of the bioadhesive instrument inclined at 50° to a metal support (Figure 1). Ten coated beads from each polymer dispersion were placed on the exposed mucous surface of the pinned tissue. The mucous-polymer interaction was allowed for 15 minutes. A 250 ml volume of SIF was allowed to flow over the beads at the rate of 30 drops per minute. The number of beads undetached at the end of the fluid flow was a measure of bioadhesion [11].

Bioadhesion of Polymers using Tensimetric Method

A 5% w/v aqueous gel of the various polymer admixtures was each coated on the glass plate of a tensiometer (A Kruess, Germany, model No. Nr. 3124) of weight 0.6 g to a thickness of 2 mm and allowed a contact time of 15 minutes. A 2 ml volume of the I-mucin was placed into the glass vial on the platform of the equipment. The glass plate on which the gel was coated was hung on the lever arm of the equipment. The coated plate was brought in contact with the I-mucin and a 7-minute contact time was allowed for polymer-mucin interaction. The coated glass plate was raised by means of a screw until it just detached from the surface of the mucin. The force required to detach the coated glass plate from the surface of the mucin was read off from the microform balance in degrees. Adequate conversion of the force to tension was obtained by calculating using the formula below [15].

\[
\frac{1}{T} = \frac{m}{{w_0}^2} \cdot 2 \left(\frac{1}{r} \right)
\]

\[
T = \frac{1}{(w_0)^2} \cdot \frac{m}{r}
\]

where:
- \(T\) = tension equivalent to bioadhesive strength
- \(m\) = weight required to return the lever point to its original position
- \(w_0\) = perimeter of the glass plate
- \(r\) = acceleration due to gravity.
Tripletate determinations were made in each case.

Preparation of Metronidazole Tablets and measurement of Bioadhesion

Four batches of metronidazole tablet containing TS-CP in the ratios of 5:0, 3:7, 2:3 and 0:5 respectively were prepared. Each tablet contained metronidazole 100 mg and enough Dibut® as direct composition filler/binder. The polymers, the drug and Dibut® were mixed thoroughly in specimen bottles. The powder mixtures were lubricated with 1% magnesium stearate prior to direct compression in an F-3 Manesty single punch electric tabletting machine fitted with 12.50 mm punches. Tablets were compressed to hardness of 3.3-3.7 kgf.

The bioadhesive test on the tablets was as described earlier under the use of tensiometer except that the metronidazole bioadhesive tablets were attached to the glass plate by means of a super glue and isolated pig ileum was used in place of I-mucin.

Dissolution Studies

The dissolution profiles of the tablets were studied using the static-bucket-magnetic stirrer assembly [16]. A tablet from each batch was placed inside the basket (aperture size 320 mm), which was immersed half way in the dissolution medium. The dissolution medium was freshly prepared SFM maintained at 37 ± 1°C. Agitation was maintained at 100 rpm by switching on a thermostated hot plate. Samples were withdrawn at predetermined time intervals and analysed for metronidazole at 277 nm in UV-Vis Spectrophotometer (Milton Roy Spectronic 1201).

RESULTS AND DISCUSSION

The results of the tensiometric determination of the bioadhesive strength of the dispersion of Carboprol 940, Taccosta starch and their admixtures are shown in Table 2 while Figure 2 shows the bioadhesion of coated glass beads on intestinal mucous surface. Carboprol 940 exhibited the highest bioadhesive strength in two methods employed in the assessment of bioadhesive strength. This is expected since Carbopols are highly negatively charged and are known to produce negative zeta potential that results in an increase in bioadhesion [17].

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Admixture (ratio)</th>
<th>Tension Nm-1 102</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS-CP</td>
<td>Polymer</td>
<td></td>
</tr>
<tr>
<td>5:0</td>
<td>5.50 ± 0.706</td>
<td>6.87 ± 0.021</td>
</tr>
<tr>
<td>1:1</td>
<td>6.20 ± 0.014</td>
<td>—</td>
</tr>
<tr>
<td>3:7</td>
<td>6.44 ± 0.090</td>
<td>8.54 ± 0.162</td>
</tr>
<tr>
<td>7:3</td>
<td>5.37 ± 0.593</td>
<td>—</td>
</tr>
<tr>
<td>3:2</td>
<td>6.08 ± 0.004</td>
<td>—</td>
</tr>
<tr>
<td>2:3</td>
<td>6.42 ± 0.078</td>
<td>8.51 ± 0.410</td>
</tr>
<tr>
<td>0:5</td>
<td>7.12 ± 0.300</td>
<td>8.65 ± 0.340</td>
</tr>
</tbody>
</table>

In addition, Carbopol 940 contains groups, which gave high capacity of hydration to the polymer [18]. It has now been established that Carbopols interact with the glycosprotein component of the mucus gel to form a strengthened network [19]. If this interaction results to the molecular inter-penetration, the interfacial layer of the muco-adhesive joint will be strengthened and this increases the chances of a dosage form formulated with such polymer to be retained at the site of application, Taccosta starch, on the other hand, exhibited the least bioadhesive strength. It is evident from Table 2 and Figure 2 that bioadhesion of the admixtures decreased with increasing proportion of Taccosta starch. This is an indication of the absence of inter-polymer complex connection between the two polymers. The reduction in bioadhesion observed could therefore be attributed to the formation of slippery film by the over wetting of the Taccosta starch component of the hydrogel. For maximum bioadhesion to occur, the hydration of a polymer coat to form a "tacky" film is necessary, while slippery mucilage, usually leads to poor adhesion [20]. This is because in the presence of excess moisture, the adhesive material becomes over-hydrated, equilibrium is lost and a slippery film results leading to reduction or loss of adhesion. The interaction between dispersion of Taccosta starch or the coated glass beads and the mucin of isolated pig intestine was relatively weak resulting in lower tensions and easy detachment.
of coated beads.

The bioadhesive strength of the tablets were higher than that obtained with the polymer dispersions. This is related to the difference in hydration of the polymer coats in mucus slurry and actual mucus surface and on slippery films that are normally formed by polymers in the presence of mucus slurry as a result of overhydration [21]. Results of the present study indicate that a strong attachment of the bioadhesive tablets to the intestine in vivo could be achieved with these polymer admixtures. The results of tensiometrie measurement (Table 2) and detachment of coated beads (Figure 2) are in close agreement with TS-CP admixtures (ratios 3:7, 2:2 and 1:1) possessing very good bioadhesive properties. In the 1980's it was believed that: (a) Strong hydroxy-bridging groups (-OH, -COOH), (b) Strong anionic charges, (c) High molecular weight and (d) Sufficient chain flexibility are responsible for bioadhesion [22]. This theory, however, had to be modified at the beginning of 1990's when Hassan and Gallo [23] demonstrated that positively charged polymer, chitosan also displays strong bioadhesion. In most cases, single polymer, may not possess all of the five listed properties and use of polymer combinations or admixture may result in blends with optimum bioadhesive properties and an added advantage of economy. Tacta starch is readily available and could be sourced locally in Nigeria. Its combination with some more expensive synthetic polymer such as Carbopol 940 will have the added advantage of economy while still achieving good bioadhesion.

The release profile of metronidazole from the compressed tablets containing the TS-CP admixtures, ratios, 5:0, 0:5, 3:7, and 2:3 are shown in Figure 3. The release of the drug from all the systems under investigation followed sustained release pattern. It is evident from the two figures that Carbopol 940 exerted more retardant effect on metronidazole release than Tacta starch and the admixtures. The retardant effect of the admixtures apparently increased with increase in the proportion of Carbopol 940. Carbopol exhibit maximum viscosity in the pH range of 5 to 10 [24] and at pH 7.5 of SIP, high viscous gel formed by Carbopol 940 led to slow diffusion of metronidazole across the gelled layers. The release profile of the drug further indicates a direct relationship between bioadhesive strength of the polymers and dissolution profile of the incorporated drug. Thus polymer mobility (swelling and viscosity) may play major role in the degree of attachment of the dosage form to intestinal mucus surface in vivo.

REFERENCES

In Vitro evaluation of the Bioadhesive properties:

CONTENTS

AGRICULTURE
- Growing performance and economic traits of pigs fed diets containing either normal maize or Ghanamp - A quality protein maize (D.B. Osei, S.A. Osei, A.K. Tawah)
- Some proximate components of sweet potato tubers (SPTM), plant fractions and by-products and the effects of the inclusion of varying levels of SPTM on pig performance and carcass-characteristics (D.B. Osei, A.K. Tawah, S.A. Osei)
- Studies on macrovegetative propagation of Black Pepper (Piper nigrum Linn.), using vine cuttings. I. Effects of plant and cultural factors on rooting and seedling development (P.Y. Boateng, C.M. Ayensu)
- Chemical dwarfing of 'Kpakpo Shito' (Capparis zeylanica Lacoq) plants grown under greenhouse conditions. I. Response of 'Kpakpo Shito' plants to different concentrations and doses of paclobutrazol (P.Y. Boateng)
- Effect of Carbon Source (Sucrose) on the Morphogenesis of Pineapple (Ananas comosus (L) Merr) Cultured in-vitro (P.Y. Addey)
- Effects of Bap (6-Benzylaminopurine) in shoot regeneration of Pineapple (Ananas comosus (L) Merr) Cultured in-vitro (P.Y. Addey)

ENGINEERING
- An Integrated approach to crushed-rock material evaluation for road construction in a Tropical Environment (K.E.N. Idade)

LIBRARY STUDIES
- Fee-based services in the Kwame Nkrumah University of Science and Technology (KNUST) Library, Kumasi (E.K. Bini)

MEDICINE

PHARMACY
- In vitro evaluation of the Bioadhesive properties of Tacta Birex-Carpel 940 admixtures and their application as Bioadhesive systems for metronidazole tablets (S.I. Offuttu)
- In vitro release of Metronidazole from suppository matrices formulated with blends of wax and Palm kernel oil (A.A. Asante, Addo, O. V. Ngissi)
- Synthesis of some Benzhydryl derivatives of Piperazinyl Pyrazol (P. O. Osadebe)

PLANNING
- Population growth, urbanization and water supply: A growing challenge to human and environmental security in the peri-urban interface in Ghana (Kwasi Nii-A-Gyebah)

SCIENCE
- Effect of "Madam Catherine" Blood Tonic on the Haematology and Histopathology of mites (Antonia Tetteh, E.K. Mutul)

VOLUME 21 NUMBERS 1, 2 & 3 2001